
The unauthorized modification and
subsequent misuse of software is

often referred to as software cracking.
Usually, cracking requires disabling one or
more software features that enforce poli-
cies (of access, usage, dissemination, etc.)
related to the software. Because there is
value and/or notoriety to be gained by
accessing valuable software capabilities,
cracking continues to be common and is a
growing problem.

To combat cracking, anti-tamper (AT)
technologies have been developed to pro-
tect valuable software. Both hardware and
software AT technologies aim to make
software more resistant against attack and
protect critical program elements.
However, before discussing the various
AT technologies, we need to know the
adversary’s goals. What do software crack-
ers hope to achieve? Their purposes vary,
and typically include one or more of the
following:
• Gaining unauthorized access. The

attacker’s goal is to disable the soft-
ware access control mechanisms built
into the software. After doing so, the
attacker can make and distribute illegal
copies whose copy protection or
usage control mechanisms have been
disabled – this is the familiar software
piracy problem. If the cracked soft-
ware provides access to classified data,
then the attacker’s real goal is not the
software itself, but the data that is
accessible through the software. The
attacker sometimes aims at modifying
or unlocking specific functionality in
the program, e.g., a demo or export ver-
sion of software is often a deliberate-
ly degraded version of what is other-
wise fully functional software. The
attacker then seeks to make it fully
functional by re-enabling the missing
features.

• Reverse engineering. The attacker
aims to understand enough about the

software to steal key routines, to gain
access to proprietary intellectual prop-
erty, or to carry out code-lifting, which
consists of reusing a crucial part of
the code (without necessarily under-
standing the internals of how it
works) in some other software. Good
programming practices, while they
facilitate software engineering, also
tend to simultaneously make it easier
to carry out reverse engineering
attacks. These attacks are potentially
very costly to the original software
developer as they allow a competitor
(or an enemy) to nullify the develop-
er’s competitive advantage by rapidly
closing a technology gap through
insights gleaned from examining the
software.

• Violating code integrity. This famil-
iar attack consists of either injecting
malicious code (malware) into a pro-
gram, injecting code that is not malev-
olent but illegally enhances a pro-
gram’s functionality, or otherwise sub-
verting a program so it performs new
and unadvertised functions (functions
that the owner or user would not
approve of). While AT technology is
related to anti-virus protection, it has
some crucial differences. AT technol-
ogy is similar to virus protection in
that it impedes malware infection of
an AT-protected executable. However,
AT technology differs from virus pro-
tection in that the AT technology’s
goal is not only to protect the client’s
software from unauthorized modifica-
tion by malevolent outsiders (infection
by malware written by others), but also
to protect the software from modifica-
tion by an authorized client. In many
situations, it is important that only
authorized applications execute (e.g.,
in a taximeter, odometer, or any situa-
tion where tampering is feared), using
only authorized functionality, and that

only valid data is used.
It should be clear by now that AT

technology is not only about anti-piracy, it
has an equal and broader aim of policy
enforcement. That aim is to enforce the
policies of the software publisher about
the proper use of the software, even as
the software is running in a potentially
hostile environment where the user owns
the processor and is intent on violating those
policies.

There is a plethora of AT protection
mechanisms. These include encryption
wrappers, code obfuscation, guarding,
and watermarking/fingerprinting in addi-
tion to various hardware techniques.
While these techniques are discussed sep-
arately for pedagogical purposes, the
reader should bear in mind that software
is best protected when several protection
techniques are used together in a mutual-
ly supportive manner. No technique is
invulnerable or even clearly superior to
the others in all circumstances; therefore,
a mix of protection techniques allows the
defense to capitalize on the strengths of
each technique while also masking the
shortfalls of other techniques. In the fol-
lowing paragraphs we present a brief
overview of these techniques.

Hardware-Based Protections
The most common hardware approach
uses a trusted processor. The trusted,
tamper-resistant hardware checks and ver-
ifies every piece of hardware and software
that exists – or that requests to be run on
a computer – starting at the boot-up
process [1]. This hardware could guaran-
tee integrity by checking every entity
when the machine boots up, and every
entity that will be run or used on that
machine after it boots up. The hardware
could, for example, store all of the keys
necessary to verify digital signatures,
decrypt licenses, decrypt software before
running it, and encrypt messages during

A Survey of Anti-Tamper Technologies

This article surveys the various anti-tamper (AT) technologies used to protect software. The primary objective of AT tech-
niques is to protect critical program information by preventing unauthorized modification and use of software. This protec-
tion goal applies to any program that requires protection from unauthorized disclosure or inadvertent transfer of leading-
edge technologies and sensitive data or systems. In this article, we review the various approaches to AT techniques, their
strengths and weaknesses, their advantages and disadvantages, and briefly discuss a process for developing program protec-
tion plans. We also survey the tools that are typically used to circumvent AT protections, and techniques that are commonly
used to make these protections more resilient against such attack. 

Dr. Mikhail J. Atallah, Eric D. Bryant, and Dr. Martin R. Stytz
Arxan Technologies, Inc.

12 CROSSTALK The Journal of Defense Software Engineering November 2004

 



any online protocols it may need to run
(e.g., for updates) with another trusted
remote entity (such as the software pub-
lisher).

Software downloaded onto a machine
would be stored in encrypted form on the
hard drive and would be decrypted and
executed by the hardware, which would
also encrypt and decrypt information it
sends and receives from its random access
memory. The same software or media
could be encrypted in a different way for
each trusted processor that would execute
it because each processor would have a
distinctive decryption key. This would put
quite a dent in the piracy problem, as dis-
seminating your software or media files to
others would not do them much good
(because their own hardware would have
different keys).

A less drastic protection than using a
separate, trusted, hardware computational
device also involves hardware, but is more
lightweight such as a smart card or physi-
cally secure token. These lightweight hard-
ware protection techniques usually require
that the hardware be present for the soft-
ware to run, to have certain functionality,
to access a media file, etc. Defeating this
kind of protection usually requires working
around the need for the hardware rather
than duplicating the hardware. The diffi-
culty of this work-around depends on the
role that the tamper-resistant hardware
plays in the protection. A device that just
outputs a serial number is trivially vulner-
able to a replay attack (e.g., an attacker
replays a valid serial number to the soft-
ware, without the presence of the hard-
ware device), whereas a smart card that
engages in a challenge-response protocol
(different data each time) prevents the
simple replay attack but is still vulnerable
(e.g., to modification of the software
interacting with the smart card). A device
that decrypts content or that provides
some essential feature of a program or
media file is even harder to defeat.

Advantages and Drawbacks
The chief advantage of hardware-based
protection techniques is that they run on
a trusted CPU and can be made arbitrari-
ly complex – hence, difficult to defeat
while inflicting minimal computational
cost on the protected software once it has
been decrypted within the hardware and
is running. However, there is a cost to
decrypt it in the first place, and also to
encrypt everything that goes out to the
non-protected part of the system, and
then decrypt it when it comes back into
the trusted hardware.

In addition, it is generally more diffi-

cult to successfully attack tamper-resistant
hardware and make the exploit directly
available to others than a software-only
protection scheme. This point holds only
for a properly designed system. A com-
promise of hardware that imprudently
contains the same secret keys as all other
hardware of the same type would lead to
widely reproducible exploits.

The advantages of hardware protec-
tion also include its capability to enforce
such rules as “only approved peripherals
can be a part of this computer system,” or
“only approved (through digital signa-
tures) software and contents are allowed,”
etc.

Nevertheless, hardware-based protec-
tion also has its drawbacks. There is the
usual problem of inflexibility: hardware-
based protections are more awkward to
modify, port, and update than software-

based ones. They are also less secure than
commonly assumed and can be broken;
see, e.g., [2]. To date, it has not been
demonstrated that hardware protections
can scale to grid computing or to small-
scale computing. In addition, there is no
guarantee that all avenues of attack are
closed by hardware protection, and there
is a significant cost attached to using
hardware protection; the cost is driven
mainly by the time needed to assemble,
integrate, and test the hardware protec-
tion technique.

Additional drawbacks to the hardware
protection approach include its expense
and general fragility to accidents (an elec-
tric power surge that fries the processor

also renders the hard drive contents unus-
able because the key that decrypts them is
destroyed). The potential implications for
censorship are also chilling. Another dis-
advantage of hardware protection is the
boot-up time and the time spent encrypt-
ing and decrypting, which makes the
approach problematic for low-end
machines and embedded systems (unless
the whole system lies within tamper-resis-
tant hardware).

Using trusted hardware also incurs
many indirect costs as a result of the ear-
lier-mentioned limitations it imposes (e.g.,
the restriction to only certain approved
hardware, software, and media creates a
barrier to competition that leads to high-
er prices). Due to the imperfect protec-
tion offered by hardware protection, a
more robust approach to software securi-
ty interweaves hardware protection with
other protection techniques such as those
discussed in the following sections.

The rest of this article discusses the
various software-based protection mecha-
nisms. The reader should keep in mind
that hardware and software protection
techniques are not mutually exclusive. A
judicious combination can serve to
increase the security of the system more
than any of its individual component
techniques.

Encryption Wrappers
With encryption wrapper software securi-
ty, critical portions of the software (or
possibly all of it) are encrypted and
decrypted dynamically at run-time. The
encryption wrapper approach works well
against a static attack, and forces the
attacker to run the program in order to
get an unencrypted image of it. To make
the attacker’s task harder, at no time dur-
ing execution is the whole software in the
clear; code decrypts just before it executes,
leaving other parts of the program still
encrypted. Therefore, no single snapshot of
memory can expose the whole decrypted
program. Of course, the attacker can take
many such snapshots, compare them, and
piece together the unencrypted program.

Another avenue of attack is to figure
out the various decryption keys that are
present in the software. One defensive
technique that can be used to delay the
attacker is to include defensive mecha-
nisms in the program that deprive the
attacker of using run-time attack tools,
e.g., anti-debugger, anti-memory dump,
and other defensive mechanisms, which
make it more difficult for the attacker to
run and analyze the program in a synthet-
ic (virtual machine) environment. Yet, a
determined attacker can usually defeat

November 2004 www.stsc.hill.af.mil 13

A Survey of Anti-Tamper Technologies

“No technique is
invulnerable or even

clearly superior to the
others in all

circumstances; therefore,
a mix of protection

techniques allows the
defense to capitalize on
the strengths of each
technique while also

masking the shortfalls of
other techniques.”



these protections (e.g., through the use of
virtual machines that faithfully emulate a
PC, including the most rarely used
instructions, cache behavior, etc).

Encryption wrappers often use light-
weight encryption to minimize the compu-
tational cost of executing the protected
program. The encryption can be advanta-
geously combined with compression: Not
only does this result in a smaller amount
of storage usage, but it also makes the
encryption harder to defeat by cryptanaly-
sis (of course one compresses before
encryption, not the other way around).

An encryption wrapper’s chief advan-
tage is that it effectively hinders an attack-
er’s ability to statically analyze a program.
The attacker is then forced to perform
more sophisticated types of dynamic
attacks, which can significantly increase
the amount of time needed to defeat the
protection. The main disadvantage of
encryption wrappers is the performance
penalty caused by the decryption over-
head, and its weakness to memory dumps:
before it can run, encryption-protected
software must be decrypted, at which
point it becomes exposed.

Code Obfuscation
Code obfuscation consists of transform-
ing code so it becomes less intelligible to
a human, thus making it not only harder
to reverse engineer, but also harder to
tamper with. In software that has specific
areas where policy checks are made, these
areas will be harder to identify and disable
after the software has been obfuscated.
Obfuscation is usually carried out by
inserting or performing obfuscating
transformations. It is a requirement that
these transformations do not damage a
program’s functionality, and it must have
only a moderate impact on code perfor-
mance, and on the storage space used on
the disk and at run-time (of the two,
speed is more important).

The obfuscation must also be resilient
to attack, and for this reason it is desirable
to maximize the obscurity of the obfuscat-
ed software. The obfuscating transforma-
tions need to be resilient against tools
designed to automatically undo them, and
to not be easily detectable by statistical
analysis of the resulting code (resilience
to statistical analysis makes it harder for
automatic tools to find the locations
where these transformations were
applied).

The different types of obfuscation
transformations that have been proposed
[3] include the following:
• Layout obfuscation. This modifies

the physical appearance of the code, e.g.,

replacing important variables with
random strings, removing all format-
ting (making nested conditional state-
ments harder to read), etc. Such trans-
formations are easy to make but are
effective only when combined with
other transformation techniques.

• Data obfuscation. This obscures the
data structures used within a program,
e.g., the representation and the meth-
ods of using that data, independent
data merging (and vice-versa – split-
ting up data that is dependent), etc.
Data obfuscation serves to delay the
attacker because data structures con-
tain important information that any
attacker needs to comprehend before
launching an attack.

• Control obfuscation. This manipu-
lates the control flow of a program to
make it difficult to discern its original
structure, e.g., through merging (or
splitting) various fragments of code,
reordering expressions, loops, or
blocks, etc. It is similar to creating a
spurious program that is entangled with
the original program so as to obscure
the important control features of that
program.

• Preventive transformations. These
aim at making it difficult for a de-
obfuscation tool to extract the true
program from the obfuscated version
of it. Preventive transformations can
be implemented by using what
Collberg [4] calls opaque predicates,
an example of which is a conditional
statement that always evaluates as
true, but in a manner that is hard to
recognize.
Obfuscation can be done at the

source-code level (source-to-source
translation) or at the assembly level.
Although most obfuscators are of the
former kind (source-to-source), assembly
level obfuscation is better because it
effectively hides the operation of the
binary. If the source-code level transfor-
mations hide information by adding
crude and inefficient ways of doing sim-
ple tasks, then the code optimizer in the
compiler may undo them. If, on the other
hand, the transformations are clever
enough to fool the optimizer, then it can
fail to properly do its job, and the perfor-
mance of the resulting code suffers. Low-
level obfuscation does not prevent the
code optimizer from doing its job, but if
done carelessly it runs the risk of produc-
ing code that looks so different from the
kind produced by the compiler that it
inadvertently flags the areas where the
transformations were applied.

Obfuscation transformations are clas-

sified according to several criteria: how
much obscurity they add to the program
(potency), how difficult they are to break
for a de-obfuscator (resilience), and how
much computational overhead they add
to the obfuscated application (cost). In
[4], software complexity metrics are used
to formalize the notion of transforma-
tion potency and resilience.

The potency of a transformation
measures how much more difficult the
obfuscated code is to understand for a
human than the original code. On the
other hand, the resilience of a transfor-
mation measures how well it stands up to
attack by an automatic de-obfuscator.
The resilience measurement takes two
factors into account: the programmer
effort required to construct the de-obfus-
cator and the execution time and space
required by the de-obfuscator to reduce
the potency of the transformation. The
best obfuscation is usually achieved by a
combination of the above three men-
tioned transformations. The combination
of the three approaches provides a well-
balanced mix of highly potent and
resilient transformations.

Like all software-only protections,
obfuscation can delay – but not prevent –
a determined attacker intent on reverse
engineering the software. Barak [5] pre-
sents a family of functions that are prov-
ably impossible to completely and suc-
cessfully obfuscate. For more informa-
tion and a discussion of code obfusca-
tion, refer to [3, 4, 6, 7].

Software Watermarking and
Fingerprinting
The goal of watermarking is to embed
information into software in a manner
that makes it hard to remove by an adver-
sary without damaging the software’s
functionality. The information inserted
could be purchaser information, or it
could be an integrity check to detect
modification, the placing of caption-type
information, etc. A watermark need not
be stealthy; visible watermarks act as a
deterrent (against piracy, for example),
but most of the literature has focused on
stealthy watermarks. In steganography
(the art of concealing the existence of
information within seemingly innocuous
carriers), the mark is required to be
stealthy: its very existence must not be
detectable [8].

A specific type of watermarking is
fingerprinting, which embeds a unique
message in each instance of the software
for traitor tracing. This has consequences
for the adversary’s ability to attack the

Software Toolbox

14 CROSSTALK The Journal of Defense Software Engineering November 2004

 



watermark: two differently marked copies
often make possible a diff attack that
compares the two differently marked
copies and can enable the adversary to
create a usable copy that has neither one
of the two marks. Thus, in any finger-
printing scheme, it is critical to use tech-
niques that are resilient against such com-
parison attacks.

A watermark is generally required to
be robust (hard to remove). In some situ-
ations, however, a fragile watermark is
desirable; it is destroyed if even a small
alteration is made to the software (e.g.,
this is useful for making the software
tamper-evident).

Software watermarks can be static,
i.e., readable without running the soft-
ware, or could appear only at run-time
(preferably in an evanescent form). In
either case, reading the watermark usual-
ly requires knowing a secret key, without
which the watermark remains invisible.

Watermarks may be used for proof of
software authorship or ownership, finger-
printing for identifying the source of ille-
gal information/software dissemination,
proof of authenticity, tamper-resistant
copyright protection, and captioning to
provide information about the software.
When software watermarks are used for
proof of authorship or ownership (cul-
prit-tracing), it is important to use a very
resilient scheme. Recall that this is when
the watermark contains information
about the copyright owner as well as the
entity that is licensed to use the software,
thus allowing trace-back to the culprit if
the item were to be illegally disseminated
to others. Breaking the security of such a
scheme can enable the attacker to frame
an innocent victim.

As you can see, while watermarks can
demonstrate authorized possession and
the fact that software has been pirated,
they do not address the reverse engineer-
ing or authorized execution issues of the
other schemes discussed; therefore, we
advocate the development and use of a
spectrum of software protection tech-
niques.

Guarding
A guard is code that is injected into the
software for the sake of AT protection. A
guard must not interfere with the pro-
gram’s basic functionality unless that pro-
gram is tampered with – it is the tamper-
ing that triggers a guard to take action
that deviates from normal program
behavior. Examples of guard functionali-
ty range from tasks as simple as compar-
ing a checksum of a code fragment to its
expected value, to repairing code (in case

it was maliciously damaged), to complex
and indirect forms of protection through
subtle side effects.

The preferred use of the guarding
approach consists of injecting into the
code to be protected a large number of
guards that mutually protect each other as
well as the software program in which
they now reside. Guards can also be used
to good effect in conjunction with hard-
ware-based protection techniques to fur-
ther ensure that the protected software is
only executed in an authorized environ-
ment.

The number, types, and stealthiness of
guards; the protection topology (who pro-
tects who); and where the guards are inject-
ed in the original code and how they are
entangled with it are some of the para-
meters in the strength of the resulting
protection: They are all tunable in a man-
ner that depends on the type of code
being protected, the desired level of pro-
tection, etc.

Manually installing such a tangled web
of protection is impractical (as it must be
done every time the software is updated),
so it is important that this protection be
done in a highly automated fashion using
high-level scripts that specify the protec-
tion guidelines and parameters. It should
be thought of as a part of the compila-
tion process where an anti-tamper option
results in code that is guarded and tam-
per-resistant.

The rationale for this approach is that
a single (even if elaborate) AT protection
scheme for a software application is
insufficient because a single defense
results in a single point of attack that can
be located and compromised. To make
self-protection robust, the defense must
not rely on a single complex protection
technique no matter how effective it
might be. Instead, there needs to be a
multitude of (possibly simple) protection
techniques installed in the program that
cooperatively enforce the code’s integrity
as well as protect the other against tam-
pering.

The guard’s response when it detects
tampering is flexible and can range from a
mild response to the disruption of nor-
mal program execution through injection
of run-time errors (crashes or even subtle
errors in the answers computed); the reac-
tion chosen depends on the software pub-
lisher’s business model and the expected
adversary. Generally, it is better for a
guard’s reaction to be delayed rather than
to occur immediately upon detection so
that tracing the reaction back to its true
cause is as difficult as possible and con-
sumes a great deal of the attacker’s time.

More on guarding can be found in [9].

AT Process
This section explores the various AT
guidelines expressed in the “Defense
Acquisition Guidebook” [10], and the
recommended process for developing a
program protection plan. The “Defense
Acquisition Guidebook” specifies the AT
measures that should be considered for
use on any system with critical program
information (CPI), developed with allied
partners, likely to be sold or provided to
United States allies and friendly foreign
governments, or likely to fall into enemy
hands. The first step in the recommended
AT methodology is to develop a program
protection plan. The process of develop-
ing this plan includes the following:
• Develop a list of critical technologies.
• Develop a threat analysis.
• Develop a list of identified vulnerabil-

ities.
• Develop a preliminary AT require-

ment.
• Perform an analysis of AT methods

that applies to the system, including
cost/benefit assessments.

• Provide an explanation of which AT
method(s) will be implemented; devel-
op a plan for validating the AT imple-
mentation.
The standard approach of validating

AT protections is done via red-teaming. A
red team consists of individuals who are
well versed in security methods and their
corresponding weaknesses. Their primary
objectives are to attempt to defeat the
protection, to assess the protection’s
strengths and weaknesses, and to make
recommendations for improvement.
While this is an effective method of eval-
uation, a major problem with red teams is
that the validation is done by humans,
and may not be totally reliable or repeat-
able. Furthermore, as the need for AT
technologies grows, red teams are becom-
ing increasingly called upon to perform
evaluations. The teams are overwhelmed
with assignments, significant delays in
product evaluations, and release results.
To improve this process, there is a clear
and present need for automated testing
and validation tools. Such tools could be
used to define a standard set of metrics
and guidelines to evaluate software pro-
tections.

Conclusion
This article has surveyed the motivation
for using AT technology, the hardware
and software AT techniques in use today,
and the strengths and weaknesses of AT
technologies. We also briefly introduced

November 2004 www.stsc.hill.af.mil 15

A Survey of Anti-Tamper Technologies

 



16 CROSSTALK The Journal of Defense Software Engineering November 2004

Software Toolbox

the process and documentation used to
develop a program protection plan. The
motivation for and primary objective of
AT technology is to protect CPI by pre-
venting unauthorized modification and
use of software. The main software AT
techniques include encryption wrappers,
code obfuscation, watermarking/finger-
printing, and guarding.

A fundamental challenge faced by
software AT technology is that the pro-
tected application is running on a host
that is not trusted, and thus cannot be
assured to be secure. Guards address this
shortfall to a degree and in a flexible and
extensible manner. However, in light of
the need for robust, seamless, compre-
hensive software defense, using both
software and hardware AT solutions in
combination often offers an appealing
alternative to using them individually
(especially if economic considerations
are factored in).

At this time, indications are that if
strong software AT technology (e.g., in
the form of judiciously constructed
guards) is added to an application so that
it requires the presence of a lightweight
tamper-resistant hardware device in order
to execute properly, the result is a strong
yet economical software protection capa-
bility.u

References
1. Arbaugh, W., D. Farber, and J. Smith. A

Secure and Reliable Bootstrap
Architecture. Proc. of the IEEE
Symposium on Security and Privacy,
Oakland, CA, 1997.

2. Anderson, R., and M. Kuhn. Tamper
Resistance – A Cautionary Note. Proc.
of Second Usenix Workshop on
Electronic Commerce, Oakland, CA,
Nov. 1996: 1-11.

3. Collberg C., and C. Thomborson.
“Watermarking, Tamper-Proofing, and
Obfuscation Tools for Software
Protection.” IEEE Transactions on
Software Engineering 28.8 (2002):
735-746, 2002.

4. Collberg, C., C. Thomborson, and D.
Low. “A Taxonomy of Obfuscating
Transformations.” Department of
Computer Science, University of
Auckland, New Zealand, 1997.

5. Barak, B., et al. “On the (Im)possibili-
ty of Obfuscating Programs.” Elec-
tronic Colloquium on Computational
Complexity. Report No. 57, 2001.

6. Wang, C., et al. “Software Tamper
Resistance: Obstructing Static Analysis
of Programs.” University of Virginia,
Computer Science Technical Report
CS-2000-12, Dec. 2000.

7. Wroblewski, G. “General Method of

Program Code Obfuscation.” Diss. Wro-
claw University of Technology, Institute
of Engineering Cybernetics, 2002.

8. Johnson, N. “Introduction to
Steganography and Steganalysis.”
Workshop on Statistical and Machine
Learning Techniques in Computer
Intrusion Detection, Johns Hopkins
University, 11-13 June 2002.

9. Chang, H., and M. Atallah. Protecting
Software Code By Guards. Proc. of
ACM Workshop on Security and
Privacy in Digital Rights Management,
Philadelphia, PA, Nov. 2001: 160-175.

10. Office of the Secretary of Defense.
Interim Defense Acquisition Guide-
book. Washington, D.C.: OSD, 30 Oct.
2002 <http://dod5000.dau.mil/DoD
5000Interactive/InterimGuidebook.
asp>.

Additional Reading
1. Lipton, R.J., S. Rajagopalan, and D.N.

Serpanos. “Spy: A Method to Secure
Clients for Network Services.” IEEE
Distributed Computing Systems
Workshops 2002: 23-28.

2. Anderson, R., and M. Kuhn. “Low
Cost Attacks on Tamper Resistant
Devices.” 5th International Workshop
on Security Protocols, Apr. 1997: 125-
136.

About the Authors

Mikhail “Mike” J.
Atallah, Ph.D., is a dis-
tinguished professor in
the Computer Science
Department at Purdue
University. His main re-

search interests are in information secu-
rity. A fellow of the Institute of Electri-
cal and Electronics Engineers, Atallah
has been both a keynote and invited
speaker at many national and interna-
tional meetings, and a speaker in the Dis-
tinguished Colloquium Series of many
top computer science departments. He is
a co-founder of Arxan Technologies
Inc. Atallah has a Master of Science and
a doctorate degree from Johns Hopkins.

Arxan Technologies, Inc.
3000 Kent AVE
STE D2-100
West Lafayette, IN 47906
Phone: (765) 494-6017 ext. 54
Fax: (765) 496-3181
E-mail: mja@cs.purdue.edu

Eric D. Bryant is a re-
search engineer for Arxan
Technologies, Inc., and is
pursuing his doctorate
degree at Purdue Univer-
sity. His primary research

interests are in information security,
reverse engineering, compiler and pro-
gramming language design, and artificial
intelligence. Bryant has a Bachelor of
Science in computer science from
Purdue University. Arxan’s EnforcIT™
product fortifies software applications
with complex software guards designed
to prevent unauthorized access, reverse
engineering, and code lifting. More
information can be found at <www.
arxan.com>.

Arxan Technologies, Inc.
3000 Kent AVE
STE D2-100
West Lafayette, IN 47906 
Phone: (765) 775-1004 ext. 106
Fax: (765) 775-1004
E-mail: ebryant@arxan.com

Martin R. Stytz, Ph.D.,
is a senior research scien-
tist and engineer for
Calculated Insight and
formerly for the Air
Force Research Labora-

tory at Wright-Patterson Air Force Base,
Ohio. Stytz was a consultant at Arxan
Technologies, Inc. at the time this article
was written. He is a member of the
Institute of Electrical and Electronics
Engineers (IEEE) Task Force on
Security and Privacy, and is on the edito-
rial board for IEEE’s Security and
Privacy. Stytz has a Bachelor of Science
from the U.S. Air Force Academy, a
Master of Arts from Central Missouri
State University, and a Master of Science
and doctorate degree from the
University of Michigan.

Calculated Insight
Orlando, FL
Phone: (407) 497-4407
Fax: (703) 671-4697
E-mail: mstytz@att.net


